
visit: www.thelearnnova.com

http://www.thelearnnova.com/

Python For Beginner

● What is Python?
Python is a high-level, interpreted programming language known for its
simplicity and readability. It is widely used in web development, data
analysis, machine learning, automation, and more.

● Why Learn Python?
○ Beginner-friendly syntax
○ Extensive libraries and frameworks
○ Strong community support
○ Versatile for various applications

Setting Up Python on Linux and Windows: Step-by-Step
Guide

1. Install Python

On Windows

● Download Python
○ Visit python.org and download the Windows installer.
○ Choose the appropriate version (32-bit or 64-bit) based on your

system.
● Install Python

○ Run the installer.
○ Check the box "Add Python to PATH" to make Python accessible

from the Command Prompt.
○ Choose Customize Installation for optional features like pip, IDLE,

and development tools.
○ Complete the installation process.

● Verify Installation

visit: www.thelearnnova.com

○ Open Command Prompt.

Run:
python --version

pip --version

On Linux

Update System Packages
sudo apt update && sudo apt upgrade -y # For Debian/Ubuntu

● Install Python

For Debian/Ubuntu:
sudo apt install python3 python3-pip -y

For Red Hat/CentOS:
sudo yum install python3 python3-pip -y

Verify Installation
python3 --version

pip3 --version

2. Choose an Editor

Recommended Editors for Both Linux and Windows

● VS Code (Visual Studio Code)
○ Download from code.visualstudio.com.

visit: www.thelearnnova.com

○ Install the Python Extension for debugging, syntax highlighting, and
more.

Command to install on Linux (Debian/Ubuntu):
sudo apt install code

● PyCharm
○ Download from jetbrains.com/pycharm.
○ Offers a free Community Edition.

● Jupyter Notebook

Install via pip:
pip install notebook

Launch:
jupyter notebook

3. Verify Python and Pip Installation

On Windows

Open Command Prompt and run:
python --version

pip --version

On Linux

Open a terminal and run:
python3 --version

visit: www.thelearnnova.com

pip3 --version

4. Set Up Virtual Environments (Optional but
Recommended)

On Windows

Create a virtual environment:
python -m venv myenv

Activate the environment:
myenv\Scripts\activate

Deactivate with:
deactivate

On Linux

Create a virtual environment:
python3 -m venv myenv

Activate the environment:
source myenv/bin/activate

Deactivate with:
deactivate

5. Install Essential Libraries

visit: www.thelearnnova.com

Use pip to install Python libraries.

Example Commands

Install libraries:
pip install numpy pandas matplotlib

Upgrade pip:
python -m pip install --upgrade pip # Windows

python3 -m pip install --upgrade pip # Linux

6. Additional Tips

● Linux Users
○ Use a package manager like apt or yum to install Python

dependencies.

Install build tools if needed:
sudo apt install build-essential -y

● Windows Users
○ Use PowerShell or Command Prompt for Python commands.
○ Use Windows Subsystem for Linux (WSL) for a Linux-like

development environment.

Script Mode: Save a file as script.py and run it with:
python script.py

visit: www.thelearnnova.com

Basic Syntax

Hello World

print("Hello, World!")

Python Comments

Single-line Comments
Comments in Python begin with a # symbol, and Python will ignore everything
following the # on that line:

This is a comment

print("Hello, World!")

Inline Comments
Comments can also be placed at the end of a line, and Python will ignore the rest of the
line:
print("Hello, World!") # This is a comment

Multiline Comments

Using Multiple # Symbols
Python does not have a specific syntax for multiline comments. However, you can use
multiple # symbols, one per line:

visit: www.thelearnnova.com

This is a comment

written in

more than just one line

print("Hello, World!")

Using Triple Quotes for Multiline Comments
Since Python ignores string literals that are not assigned to a variable, you can use triple
quotes (""" or ''') to create multiline comments:

"""

This is a comment

written in

more than just one line

"""

print("Hello, World!")

visit: www.thelearnnova.com

1. Operators

Arithmetic Operators
These operators perform mathematical operations like addition, subtraction, etc.

● + : Addition
● - : Subtraction
● * : Multiplication
● / : Division
● % : Modulus (remainder of division)
● // : Floor division (returns the integer part of the division)
● ** : Exponentiation (raising to a power)

Example:

a = 10

b = 5

print(a + b) # Output: 15

print(a - b) # Output: 5

Comparison Operators
These operators compare two values and return True or False.

● == : Equal to
● != : Not equal to
● > : Greater than
● < : Less than
● >= : Greater than or equal to
● <= : Less than or equal to

visit: www.thelearnnova.com

Logical Operators
These operators are used to combine conditional statements.

● and : Returns True if both conditions are true
● or : Returns True if at least one condition is true
● not : Reverses the result (returns True if the condition is false)

2. Variables and Data Types:

In Python, variables are used to store data. You can think of a variable as a box
where you store something (like a number or a name). Data types tell Python what
kind of data you're storing.

● Integer: Whole numbers (e.g., 5)
● Float: Numbers with decimal points (e.g., 3.14)
● String: Text (e.g., "Alice")
● Boolean: True or False values (e.g., True)

x = 5 # Integer
y = 3.14 # Float
name = "Alice" # String
is_active = True # Boolean

3. Lists:

A list is like a collection of items. You can store multiple items in a list, and each
item can be accessed by its position (index). Lists are very flexible and allow you
to change, add, or remove items.

fruits = ["apple", "banana", "cherry"]
print(fruits[0]) # Output: apple
fruits.append("orange") # Adding an item

visit: www.thelearnnova.com

Output: ['apple', 'banana', 'cherry', 'orange']

Lists (Advanced Operations):

Lists are one of the most important data structures in Python. You can perform
various operations on them.

● Slicing: Extract a portion of a list.

numbers = [1, 2, 3, 4, 5]
print(numbers[1:4]) # Output: [2, 3, 4]

● List Comprehension: A compact way to create lists.

squares = [x**2 for x in range(5)]
print(squares) # Output: [0, 1, 4, 9, 16]

● Sorting and Reversing:

numbers = [5, 2, 9, 1]
numbers.sort() # Sorting the list in ascending order
print(numbers) # Output: [1, 2, 5, 9]

numbers.reverse() # Reversing the list
print(numbers) # Output: [9, 5, 2, 1]

4. Tuples:

A tuple is similar to a list but with one important difference: it is immutable. This
means that once you create a tuple, you cannot change, add, or remove elements

visit: www.thelearnnova.com

from it. Tuples are useful when you want to store a collection of values that should
not be modified, like the coordinates of a point or days of the week.

Creating a Tuple

Tuples are defined using parentheses (), and they can contain elements of different
data types (e.g., integers, strings, booleans).

Creating a tuple
my_tuple = (1, 2, 3, "apple", True)
print(my_tuple) # Output: (1, 2, 3, 'apple', True)

Tuple Immutability

Since tuples are immutable, you cannot change their values after creation. Trying
to do so will raise an error.

my_tuple[1] = 10 # ❌ This will raise an error

Tuple with One Element

To create a tuple with just one element, you need to add a trailing comma.

single_tuple = (5,) # ✅ Correct
not_a_tuple = (5) # ❌ This is just an integer
print(type(single_tuple)) # Output: <class 'tuple'>
print(type(not_a_tuple)) # Output: <class 'int'>

visit: www.thelearnnova.com

5. Dictionaries:

A dictionary is like a collection of key-value pairs. Each value is associated with a
unique key. You can use the key to access the value.

person = {"name": "Alice", "age": 25}
print(person["name"]) # Output: Alice

6. Conditional Statements:

Conditional statements let you check if something is true or false and then take
different actions based on that. It's like asking a question: "Is this true?" If yes, do
one thing; if no, do something else.

x = 10
if x > 5:
 print("x is greater than 5")
else:
 print("x is less than or equal to 5")

7. Loops:

Loops allow you to repeat a block of code multiple times.

● For Loop: You use a for loop when you know how many times you want to
repeat something.

for i in range(5):
 print(i) # Output: 0, 1, 2, 3, 4

visit: www.thelearnnova.com

● While Loop: You use a while loop when you want to repeat something until
a certain condition is met.

count = 0
while count < 5:
 print(count)
 count += 1 # Output: 0, 1, 2, 3, 4

8. Functions:

A function is a block of code that does something. You can define your own
functions to organize your code and reuse it. Functions help make your code
cleaner and more efficient.

def greet(name):
 return "Hello, " + name

print(greet("Alice")) # Output: Hello, Alice

def square(x):

return x * x

print(square(4)) # Output: 1

9. Classes and Objects:

In Python, you can create your own types using classes. A class is like a blueprint
for creating objects. An object is an instance of a class. Classes allow you to group
related data and functions together.

visit: www.thelearnnova.com

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def greet(self):
 return f"Hello, my name is {self.name} and I am {self.age} years old."

person1 = Person("Alice", 25)
print(person1.greet()) # Output: Hello, my name is Alice and I am 25 years old.

10. Importing Libraries:

Python comes with a lot of built-in libraries (also called modules) that help you do
common tasks. You can import these libraries into your code to use their
functionality.

import math
print(math.sqrt(16)) # Output: 4.0

11. Fibonacci Series in Python

def fib(n):

 a, b = 0, 1

 while a < n:

 print(a, end=' ')

 a, b = b, a + b

 print()

visit: www.thelearnnova.com

fib(1000)

Output:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Fibonacci in Stock Market

def fib(n):

 a, b = 0, 1

 sequence = []

 while a < n:

 sequence.append(a)

 a, b = b, a + b

 return sequence

max_price = 1000

retracement_levels = fib(max_price)

print("Fibonacci retracement levels:", retracement_levels)

Output:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

visit: www.thelearnnova.com

When to Buy & Sell?

📌 Buy: When the price retraces to 61.8%, 50%, or 38.2% and bounces up.
📌 Sell: When the price rises to 38.2%, 50%, or 61.8% and struggles to go
higher.
38.2%

● 50%
● 61.8%
● 78.6%

These levels are calculated by dividing each number in the Fibonacci sequence by
the number two places ahead of it. For example:

● 55 ÷ 144 ≈ 0.3819, which is approximately 38.2%.
● 89 ÷ 233 ≈ 0.3819, which is also 38.2%.

Example Trading Strategy

1⃣ Stock peaks at ₹1000
2⃣ Drops to ₹618 (61.8%) → Buy
3⃣ Rises to ₹786 (78.6%) → Sell
4⃣ If it breaks ₹1000, wait for new Fibonacci extension levels.

12. String Manipulation:

Strings are used to handle text data. You can perform several operations on strings.

● Concatenation: Combine strings.

greeting = "Hello"
name = "Alice"

visit: www.thelearnnova.com

message = greeting + ", " + name
print(message) # Output: Hello, Alice

● String Methods:

text = "hello world"
print(text.upper()) # Output: HELLO WORLD
print(text.replace("world", "Python")) # Output: hello Python

● String Formatting: Insert variables into strings.

name = "Alice"
age = 25
message = f"My name is {name} and I am {age} years old."
print(message) # Output: My name is Alice and I am 25 years old.

13. Exception Handling:

Exceptions are errors that occur during program execution. Python provides a way
to handle these errors gracefully using try, except.

try:
 x = 10 / 0
except ZeroDivisionError:
 print("Cannot divide by zero!")

● Else and Finally: You can also add else and finally blocks.

try:
 x = 10 / 2

visit: www.thelearnnova.com

except ZeroDivisionError:
 print("Cannot divide by zero!")
else:
 print("Division successful!")
finally:
 print("This will always run.")

14. Lambda Functions:

Lambda functions are small anonymous functions defined using the lambda
keyword.

Regular function
def add(x, y):
 return x + y

Lambda function
add_lambda = lambda x, y: x + y
print(add_lambda(2, 3)) # Output: 5

Lambda functions are often used in places where you need a simple function for a
short period, like in map(), filter(), or sorted().

15. Map, Filter, and Reduce:

● Map: Applies a function to all items in an input list.

numbers = [1, 2, 3, 4]
squared = list(map(lambda x: x**2, numbers))
print(squared) # Output: [1, 4, 9, 16]

● Filter: Filters elements based on a condition.

visit: www.thelearnnova.com

numbers = [1, 2, 3, 4, 5]
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
print(even_numbers) # Output: [2, 4]

● Reduce (from functools): Reduces a list to a single value by applying a
function cumulatively.

from functools import reduce

numbers = [1, 2, 3, 4]
product = reduce(lambda x, y: x * y, numbers)
print(product) # Output: 24

16. File Handling

Sometimes, you may need to read from or write to files. Python allows you to
easily open, read, and write files.

● Writing to a file:

with open("example.txt", "w") as file:
 file.write("Hello, world!")

● Reading from a file:

with open("example.txt", "r") as file:
 content = file.read()
 print(content) # Output: Hello, world!

 Working with Files (Advanced):

visit: www.thelearnnova.com

● Reading Large Files: Instead of reading the entire file into memory, you
can read it line by line.

with open("large_file.txt", "r") as file:
 for line in file:
 print(line.strip()) # strip() removes leading/trailing whitespaces

● Writing to Files (Append Mode):

with open("log.txt", "a") as file:
 file.write("New log entry\n")

17. Regular Expressions (Regex):

What is Regex?

Regular Expressions (Regex) are patterns used to search for specific text in a
string. It helps find, validate, and modify text efficiently.

Think of Regex like "Ctrl + F" but much more powerful!

🔹 Example:

● Searching for a phone number in a document
● Checking if an email address is valid
● Replacing spaces with underscores in a sentence

How to Use Regex in Python?

Python provides a built-in module called re for working with regular expressions.

First, import the module:

visit: www.thelearnnova.com

import re # Import the regex module

Finding a Word in a Sentence

import re

text = "I love learning Python!"
match = re.search(r"Python", text) # Looks for the word "Python"

if match:
 print("Found 'Python' in the text!")

✅ Explanation:

● re.search(pattern, text) → Searches for "Python" in the text.
● If found, it prints "Found 'Python' in the text!".

Finding a Number in a Sentence

import re

text = "My favorite number is 42."
match = re.search(r"\d+", text) # Looks for one or more digits

if match:
 print("Found number:", match.group()) # Output: 42

✅ Explanation:

visit: www.thelearnnova.com

● \d+ → Matches one or more digits (e.g., 42).
● match.group() → Returns the found number.

Checking if an Email is Valid
import re

email = "user@example.com"
pattern = r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$"

if re.match(pattern, email):
 print("Valid email!")
else:
 print("Invalid email!")

✅ Explanation:

● ^ → Start of the string
● [a-zA-Z0-9_.+-]+ → Letters, numbers, and some special characters
● @ → Must contain @
● [a-zA-Z0-9-]+ → Domain name (e.g., example)
● \.[a-zA-Z0-9-.]+$ → Ends with .com, .org, etc.

Extracting a Date from a Sentence
import re

text = "The event is on 15/08/2025."
date = re.search(r"\d{2}/\d{2}/\d{4}", text)

if date:
 print("Found date:", date.group()) # Output: 15/08/2025

visit: www.thelearnnova.com

✅ Explanation:

● \d{2}/\d{2}/\d{4} → Finds a date in dd/mm/yyyy format.

Checking if a Phone Number is Valid
import re

phone_number = "(123) 456-7890"
pattern = r"\(\d{3}\) \d{3}-\d{4}"

if re.match(pattern, phone_number):
 print("Valid phone number!")
else:
 print("Invalid phone number!")

✅ Explanation:

● \(\d{3}\) → Matches (123).
● \d{3}-\d{4} → Matches 456-7890.

Replacing Spaces with Underscores
import re

text = "Hello World!"
modified_text = re.sub(r"\s", "_", text) # Replaces spaces with underscores

print(modified_text) # Output: Hello_World!

✅ Explanation:

● \s → Matches spaces.
● re.sub(pattern, replacement, text) → Replaces spaces with underscores.

visit: www.thelearnnova.com

Extracting a Website URL from Text

import re

text = "Visit our website at https://www.example.com for more info."
url = re.search(r"https?://[a-zA-Z0-9./]+", text)

if url:
 print("Found URL:", url.group()) # Output: https://www.example.com

✅ Explanation:

● https?:// → Matches http:// or https://.
● [a-zA-Z0-9./]+ → Matches the rest of the URL.

Splitting a Sentence into Words
import re

text = "apple, banana, cherry"
fruits = re.split(r",\s*", text) # Splits by commas and spaces

print(fruits) # Output: ['apple', 'banana', 'cherry']

✅ Explanation:

● re.split() → Splits text based on commas and spaces.

Finding All Numbers in a Sentence

visit: www.thelearnnova.com

import re

text = "I have 3 apples, 7 bananas, and 12 cherries."
numbers = re.findall(r"\d+", text)

print("Numbers found:", numbers) # Output: ['3', '7', '12']

✅ Explanation:

● \d+ → Finds all numbers in the text.
● re.findall() → Returns a list of all matches.

Finding Words That Start with "A" or "a"

import re

text = "Alice and Alex are amazing artists."
words = re.findall(r"\b[Aa]\w+", text)

print("Words found:", words) # Output: ['Alice', 'Alex', 'amazing', 'artists']

✅ Explanation:

● \b → Matches word boundaries (start of a word).
● [Aa] → Matches uppercase or lowercase "A".
● \w+ → Matches the rest of the word.

Checking if a Password is Strong

A strong password should have:

visit: www.thelearnnova.com

● At least 8 characters
● At least one uppercase letter
● At least one lowercase letter
● At least one number
● At least one special character

import re

password = "Secure@123"
pattern =
r"^(?=.*[A-Z])(?=.*[a-z])(?=.*\d)(?=.*[@$!%*?&])[A-Za-z\d@$!%*?&]{8,}$"

if re.match(pattern, password):
 print("Strong password!")
else:
 print("Weak password! Try adding uppercase, lowercase, numbers, and special
characters.")

✅ Explanation:

● (?=.*[A-Z]) → At least one uppercase letter
● (?=.*[a-z]) → At least one lowercase letter
● (?=.*\d) → At least one digit
● (?=.*[@$!%*?&]) → At least one special character
● {8,} → At least 8 characters long

Extracting All Words from a Sentence

import re

text = "Python is fun! Let's learn regex together."
words = re.findall(r"\b\w+\b", text)

visit: www.thelearnnova.com

print("Words:", words)
Output: ['Python', 'is', 'fun', 'Let', 's', 'learn', 'regex', 'together']

✅ Explanation:

● \b → Word boundary (start and end of a word)
● \w+ → One or more word characters (letters, numbers, underscore)

Extracting All Email Addresses from a Text

import re

text = "Contact us at support@example.com or sales@company.org."
emails = re.findall(r"[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+", text)

print("Emails found:", emails)
Output: ['support@example.com', 'sales@company.org']

✅ Explanation:

● Looks for text with @ and a valid domain.

Extracting All Hashtags from a Tweet
import re

tweet = "Learning #Python and #Regex is fun! #Coding"
hashtags = re.findall(r"#\w+", tweet)

print("Hashtags found:", hashtags)

visit: www.thelearnnova.com

Output: ['#Python', '#Regex', '#Coding']

✅ Explanation:

● #\w+ → Finds words starting with #.

Extracting All Capitalized Words (Proper Nouns)
import re

text = "Alice and Bob are learning Python in New York."
capitalized_words = re.findall(r"\b[A-Z][a-z]*\b", text)

print("Capitalized words:", capitalized_words)
Output: ['Alice', 'Bob', 'Python', 'New', 'York']

✅ Explanation:

● \b[A-Z][a-z]*\b → Finds words that start with a capital letter.

Removing Extra Spaces from a Sentence

import re

text = "Python is awesome!"
cleaned_text = re.sub(r"\s+", " ", text) # Replace multiple spaces with a single
space

print(cleaned_text)
Output: "Python is awesome!"

visit: www.thelearnnova.com

✅ Explanation:

● \s+ → Matches one or more spaces.

Extracting All Numbers from a String
import re

text = "I have 3 apples, 10 bananas, and 25 oranges."
numbers = re.findall(r"\d+", text)

print("Numbers found:", numbers)
Output: ['3', '10', '25']

✅ Explanation:

● \d+ → Finds all numbers.

Extracting All Words That Start with "T" or "t"
import re

text = "The tiger and the turtle are in the zoo."
words = re.findall(r"\b[Tt]\w+", text)

print("Words found:", words)
Output: ['The', 'tiger', 'the', 'turtle', 'the']

✅ Explanation:

● \b[Tt]\w+ → Finds words that start with "T" or "t".

visit: www.thelearnnova.com

Checking if a String Contains Only Letters and Numbers
import re

text = "Python123"
if re.fullmatch(r"[A-Za-z0-9]+", text):
 print("Valid input (letters and numbers only)")
else:
 print("Invalid input!")

✅ Explanation:

● re.fullmatch() → Checks if the entire string matches the pattern.
● [A-Za-z0-9]+ → Allows only letters and numbers.

Extracting Sentences That End with a Question Mark
import re

text = "What is your name? Where do you live? I love Python!"
questions = re

18. Working with Dates and Times:

Python has a built-in module datetime to work with dates and times.

from datetime import datetime

Get current date and time
now = datetime.now()
print(now) # Output: 2025-01-25 14:30:45.123456

visit: www.thelearnnova.com

Format date and time
formatted = now.strftime("%Y-%m-%d %H:%M:%S")
print(formatted) # Output: 2025-01-25 14:30:45

19. Modules and Packages:

Modules are Python files containing code that you can import and use in your
programs. Packages are collections of modules.

● Importing a Module:

import math
print(math.sqrt(16)) # Output: 4.0

● Creating Your Own Module: Create a file mymodule.py:

def greet(name):
 return f"Hello, {name}!"

Then, in another file:

import mymodule
print(mymodule.greet("Alice")) # Output: Hello, Alice!

20. Object-Oriented Programming (OOP) Concepts:

Object-Oriented Programming (OOP) is a programming paradigm that organizes
code into "objects," which are instances of classes. It is a popular approach in
Python, and understanding its core concepts is essential for any new learner. Here’s
an introduction to the main OOP concepts in Python:

visit: www.thelearnnova.com

OOP is a way of writing programs where we create objects that represent
real-world things.

Think of a car:

● It has features (data) → Brand, model, color
● It can perform actions → Start, stop, honk

In Python, we use OOP to organize our code in a similar way.

i) Class: A Blueprint for Objects

A class is like a blueprint for creating objects.

Example: Car Class (Blueprint)

class Car:
 # Class attribute (shared by all cars)
 wheels = 4

 # Constructor (used to create objects)
 def __init__(self, brand, model):
 self.brand = brand # Instance attribute
 self.model = model # Instance attribute

 # Method (action)
 def display_info(self):
 print(f"{self.brand} {self.model} has {self.wheels} wheels.")

✔ Car is the class (blueprint).
✔ brand and model are attributes (data).
✔ display_info() is a method (action).

visit: www.thelearnnova.com

ii) Object: A Real Example of a Class

An object is a real item created from a class.

Example: Creating an Object

Creating an object of class Car
my_car = Car("Toyota", "Corolla")

Calling a method
my_car.display_info()

Output:

Toyota Corolla has 4 wheels.

✔ my_car is an object of the Car class.
✔ It has its own data (Toyota, Corolla).

iii) Attributes: Data Inside an Object

Attributes store information inside an object.

● Instance Attributes → Unique to each object (e.g., brand, model).
● Class Attributes → Shared by all objects (e.g., wheels).

Example: Accessing Attributes
print(my_car.brand) # Instance attribute
print(Car.wheels) # Class attribute

iv) Methods: Actions an Object Can Perform

Methods are functions inside a class that define what an object can do.

visit: www.thelearnnova.com

Example: A Dog That Can Bark

class Dog:
 def __init__(self, name, breed):
 self.name = name
 self.breed = breed

 def bark(self):
 print(f"{self.name} says Woof!")

dog = Dog("Buddy", "Golden Retriever")
dog.bark() # Calling a method

Output:

Buddy says Woof!

✔ The bark() method makes the dog "talk."

v) Inheritance: Reusing Code from Another Class

Inheritance allows one class (child class) to reuse the attributes and methods of
another class (parent class).

Example: A Dog Inheriting from an Animal
python

class Animal:
 def speak(self):
 print("Animal speaks")

class Dog(Animal): # Dog inherits from Animal

visit: www.thelearnnova.com

 def speak(self):
 print("Dog barks")

dog = Dog()
dog.speak() # Calls Dog's speak method

Output:

Dog barks

✔ The Dog class gets its behavior from the Animal class.

vi) Encapsulation: Hiding Data Inside an Object

Encapsulation hides internal data and allows access only through specific methods.

Example: A Car with Private Speed

In this example, we'll create a Car class that has a private attribute for speed, and
we'll use methods to control the speed of the car.

class Car:

 def __init__(self, brand, speed):

 self.__brand = brand # Private attribute for brand

 self.__speed = speed # Private attribute for speed

 def accelerate(self, increment):

 if increment > 0:

 self.__speed += increment

visit: www.thelearnnova.com

 def brake(self, decrement):

 if decrement > 0 and self.__speed - decrement >= 0:

 self.__speed -= decrement

 def get_speed(self):

 return self.__speed

 def get_brand(self):

 return self.__brand

Explanation:

Private Attributes (__brand, __speed):

○ self.__brand and self.__speed are private attributes of the Car object.
They cannot be accessed directly from outside the class. This helps
protect the internal state of the car.

Methods for Controlling Speed:

○ accelerate(self, increment): This method increases the car's speed by a
given increment (only if the increment is positive).

○ brake(self, decrement): This method decreases the car's speed by a
given decrement (only if the decrement is positive and the resulting
speed does not go below 0).

○ get_speed(self): This method allows you to access the current speed of
the car.

visit: www.thelearnnova.com

○ get_brand(self): This method allows you to access the brand of the
car.

Using the Car Class:

my_car = Car("Toyota", 50) # Create a Car object with brand "Toyota" and speed
50

print(my_car.get_speed()) # Output: 50

my_car.accelerate(30) # Accelerate the car by 30

print(my_car.get_speed()) # Output: 80

my_car.brake(20) # Apply the brake to reduce speed by 20

print(my_car.get_speed()) # Output: 60

Output:

50

80

60

Key Points:

● Private Data (__speed, __brand): The speed and brand are private,
meaning they can't be changed directly from outside the class. This ensures
that the internal state of the car is protected.

● Methods for Controlled Access:

visit: www.thelearnnova.com

○ accelerate() and brake() methods control how the speed changes,
ensuring that the speed doesn't go below zero and that it only
increases when requested.

○ get_speed() and get_brand() provide a way to safely access the car's
data.

Why This Is Encapsulation:

● The internal data (like the car's speed and brand) is hidden inside the
object and can only be accessed or modified through methods like
accelerate, brake, and get_speed.

● This ensures that the car’s state is always valid (e.g., speed cannot go below
zero), and any changes to the car’s data are controlled and safe.

vii) Polymorphism: One Method, Different Behaviors

Polymorphism allows different classes to have methods with the same name but
different behaviors.

Example: Different Animals Making Different Sounds
class Cat:
 def speak(self):
 print("Meow")

class Dog:
 def speak(self):
 print("Woof")

animals = [Cat(), Dog()]

for animal in animals:
 animal.speak() # Different behavior based on object type

visit: www.thelearnnova.com

Output:

Meow
Woof

✔ Both Cat and Dog have a speak() method, but they behave differently.

viii) Abstraction: Hiding Complex Details

Abstraction hides unnecessary details and shows only what’s important.

Example: Using an Abstract Class
from abc import ABC, abstractmethod

class Animal(ABC): # Abstract class
 @abstractmethod
 def speak(self):
 pass # Must be defined in child classes

class Dog(Animal):
 def speak(self):
 print("Woof")

dog = Dog()
dog.speak()

Output:

Woof

✔ The Animal class only defines speak(), but doesn’t implement it.
✔ The Dog class must define speak().

visit: www.thelearnnova.com

Summary of OOP Concepts in Python

● Class → A blueprint for creating objects.
● Object → A real instance of a class.
● Attributes → Data stored in an object.
● Methods → Actions an object can perform.
● Inheritance → Allows one class to reuse code from another class.
● Encapsulation → Hides data and restricts access to it.
● Polymorphism → One method name, different behaviors.
● Abstraction → Hides complex details and shows only important parts.

Why Use OOP?

✅ Makes code organized and easier to manage
✅ Helps reuse code (Inheritance)
✅ Improves security (Encapsulation)
✅ Allows flexibility (Polymorphism)

21. Decorators:

Decorators are a way to modify or enhance functions or methods without changing
their actual code.

def decorator(func):
 def wrapper():
 print("Before function call")
 func()
 print("After function call")
 return wrapper

visit: www.thelearnnova.com

@decorator
def say_hello():
 print("Hello!")

say_hello()

Output:

Before function call
Hello!
After function call

What Happens Step-by-Step

1. The @decorator syntax applies the decorator function to say_hello. It
replaces say_hello with the wrapper function returned by the decorator.

2. When say_hello() is called:
○ The wrapper function runs.
○ Inside the wrapper, the message "Before function call" is printed.
○ The original say_hello function is executed, printing "Hello!".
○ After the original function, the message "After function call" is

printed.

Output
Before function call
Hello!
After function call

Why Use Decorators?

visit: www.thelearnnova.com

● Reusability: Add the same behavior (e.g., logging, authentication) to
multiple functions without repeating code.

● Clean Code: Keep the original function's logic separate from additional
functionality.

● Flexibility: Apply or remove behaviors easily by adding or removing
decorators.

22. Understanding Iterators and Generators:

Iterator:

● An iterator is like a tool that helps you go through items in a collection (like
a list or a tuple) one by one.

● It keeps track of where it is in the collection.
● You can create an iterator from a collection using the iter() function.
● To get the next item, you use the next() function. When there are no more

items, next() will stop the iteration and raise a StopIteration error.

Example:

numbers = [1, 2, 3]
iterator = iter(numbers)
print(next(iterator)) # Output: 1

Generator:

● A generator is a special type of function that returns an iterator. It uses the
yield keyword to return values one at a time.

● Instead of running the function completely, a generator "pauses" at the yield
statement and gives back a value. The next time it is called, it picks up from
where it left off.

● Generators are useful because they don’t generate all the values at once,
saving memory.

Example:

visit: www.thelearnnova.com

def count_up_to(n):
 count = 1
 while count <= n:
 yield count
 count += 1

counter = count_up_to(3)
for num in counter:
 print(num) # Output: 1, 2, 3

Key Differences:

● Iterator: It's an object (like a list) that can be iterated over.
● Generator: It's a function that generates values one at a time using yield.

Why use Generators?

● Memory Efficient: Generators don’t store all the values at once. They
generate each value only when needed.

● Great for Large Datasets: They’re useful when working with large
amounts of data or infinite sequences because they don’t take up a lot of
memory.

23. List and Dictionary Comprehensions (Advanced):

List and dictionary comprehensions are powerful tools for creating and
transforming data structures in a concise way.

● List Comprehension: Create a list by applying an expression to each item in
an existing iterable.

numbers = [1, 2, 3, 4, 5]
squares = [x**2 for x in numbers]

visit: www.thelearnnova.com

print(squares) # Output: [1, 4, 9, 16, 25]

● Dictionary Comprehension: Similar to list comprehension, but it creates a
dictionary.

names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
age_dict = {name: age for name, age in zip(names, ages)}
print(age_dict) # Output: {'Alice': 25, 'Bob': 30, 'Charlie': 35}

24. Enumerate:

enumerate() is a built-in function that allows you to loop over an iterable and get
both the index and the value.

fruits = ["apple", "banana", "cherry"]
for index, fruit in enumerate(fruits):
 print(f"{index}: {fruit}")
Output:
0: apple
1: banana
2: cherry

25. Zip:

zip() is a built-in function that combines multiple iterables (like lists or tuples) into
a single iterable of tuples.

names = ["Alice", "Bob", "Charlie"]

visit: www.thelearnnova.com

scores = [85, 90, 95]
combined = zip(names, scores)
print(list(combined)) # Output: [('Alice', 85), ('Bob', 90), ('Charlie', 95)]

26. Set Operations:

Sets are unordered collections of unique elements. You can perform mathematical
operations like union, intersection, and difference on sets.

● Union: Combines two sets.

set1 = {1, 2, 3}
set2 = {3, 4, 5}
union_set = set1 | set2
print(union_set) # Output: {1, 2, 3, 4, 5}

● Intersection: Finds common elements between two sets.

intersection_set = set1 & set2
print(intersection_set) # Output: {3}

● Difference: Finds elements in the first set that are not in the second.

difference_set = set1 - set2
print(difference_set) # Output: {1, 2}

27. Handling Timeouts and Delays (time.sleep):

Sometimes, you need to pause your program for a specific amount of time. You can
do this using time.sleep().

visit: www.thelearnnova.com

import time

print("Starting...")
time.sleep(2) # Waits for 2 seconds
print("2 seconds later...")

28. Context Managers (with statement):

Context managers are used to set up and tear down resources automatically. The
with statement is commonly used for managing files, database connections, and
more.

with open("example.txt", "w") as file:
 file.write("This is a test file.")
No need to manually close the file; it will be closed automatically after the block.

29. Multi-threading:

Python allows you to run multiple threads (tasks) concurrently. This is useful for
I/O-bound tasks.

import threading

def print_numbers():
 for i in range(5):
 print(i)

Create two threads
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_numbers)

visit: www.thelearnnova.com

Start the threads
thread1.start()
thread2.start()

Wait for both threads to finish
thread1.join()
thread2.join()

Use cases where multi-threading in Python can be highly beneficial:

i. Web Scraping

● Scenario: Scraping data from multiple web pages concurrently.
● Why Multi-threading: Web scraping often involves waiting for HTTP

responses, which is an I/O-bound task. By using threads, you can scrape
multiple pages at the same time, improving efficiency.

● Example: Using multiple threads to scrape data from different URLs
concurrently.

ii. Downloading Files

● Scenario: Downloading multiple files from the internet at the same time.
● Why Multi-threading: File downloads are typically I/O-bound tasks.

Running multiple threads allows you to download files concurrently,
reducing the total time required.

● Example: Downloading multiple files from different servers or URLs
concurrently.

iii. Parallel Data Processing

visit: www.thelearnnova.com

● Scenario: Processing large datasets or performing computationally
expensive tasks (e.g., image processing, video encoding).

● Why Multi-threading: If the task involves multiple independent operations
(e.g., processing different chunks of data), threads can be used to handle
these tasks concurrently, speeding up the process.

● Example: Processing multiple images or videos at the same time using
separate threads.

iv. Server Handling Multiple Requests

● Scenario: A server that needs to handle multiple client requests
concurrently.

● Why Multi-threading: A web server can use threads to handle each
incoming request independently. This allows the server to serve multiple
clients at once without blocking.

● Example: A web server where each incoming HTTP request is handled by a
separate thread.

v. Real-time Applications

● Scenario: Handling multiple real-time inputs or events (e.g., from sensors,
user input, or network data).

● Why Multi-threading: In real-time applications, you may need to handle
multiple events or inputs concurrently without blocking the main program
flow.

● Example: A game that handles user input, network data, and game logic in
separate threads.

vi. Background Tasks

visit: www.thelearnnova.com

● Scenario: Running background tasks while the main application continues
to run.

● Why Multi-threading: Some tasks, like periodic data syncing, logging, or
monitoring, can be handled in the background while the main application
remains responsive.

● Example: A chat application that runs background tasks (like checking for
new messages) in a separate thread while the user interacts with the UI.

vii. Database Operations

● Scenario: Performing multiple database queries concurrently.
● Why Multi-threading: Database operations often involve waiting for I/O

responses. By using threads, you can perform multiple queries concurrently,
reducing the overall time taken to complete the operations.

● Example: Running multiple database queries in parallel to fetch data from
different tables or databases.

viii. Machine Learning Model Training

● Scenario: Training multiple machine learning models or running
hyperparameter tuning concurrently.

● Why Multi-threading: Training different models or running experiments
with different hyperparameters can be done concurrently using threads,
speeding up the experimentation process.

● Example: Running multiple training jobs for different models or
hyperparameter configurations in parallel.

ix. Chatbots or Virtual Assistants

● Scenario: Handling multiple user queries simultaneously in a chatbot or
virtual assistant.

visit: www.thelearnnova.com

● Why Multi-threading: Each user query can be processed in a separate
thread, allowing the assistant to handle multiple conversations at the same
time without blocking.

● Example: A chatbot that responds to user queries concurrently in a
multi-threaded environment.

x. Real-time Data Monitoring

● Scenario: Monitoring multiple sources of real-time data (e.g., sensors, logs,
system metrics).

● Why Multi-threading: Each data source can be monitored in a separate
thread, allowing the system to collect and process data concurrently without
blocking.

● Example: A system that monitors CPU usage, memory usage, and network
traffic in separate threads.

30. Decorators with Arguments:

What is a Decorator?

A decorator is a special function in Python that allows you to modify or enhance
another function without changing its actual code. Think of it like a wrapper that
you can put around a function to add extra behavior.

What are Decorators with Arguments?

Decorators can also accept arguments (like regular functions do). This makes
them even more powerful and flexible because you can customize their behavior
based on the values you pass to them.

Simple Example: Repeating a Function

visit: www.thelearnnova.com

Imagine you have a function that says "Hello", but you want it to say "Hello"
multiple times. Instead of writing the same code over and over, you can use a
decorator to repeat it for you.

You can create decorators that accept arguments to make them more flexible.

def repeat(n):
 def decorator(func):
 def wrapper(*args, **kwargs):
 for _ in range(n):
 func(*args, **kwargs)
 return wrapper
 return decorator

@repeat(3)
def greet(name):
 print(f"Hello, {name}!")

greet("Alice")
Output:
Hello, Alice!
Hello, Alice!
Hello, Alice!

What Happens Here?

1. repeat(n): This is the main decorator. It takes an argument n (the number of
times you want the function to repeat).

2. decorator(func): This function takes the original function greet and wraps it
with additional behavior.

3. wrapper(*args, **kwargs): This is the function that actually does the
repeating. It runs the original function greet n times.

visit: www.thelearnnova.com

4. @repeat(3): This is the decorator syntax. It means "decorate the greet
function with the repeat decorator, repeating it 3 times."

Output:
Hello, Alice!
Hello, Alice!
Hello, Alice!

Why Use Decorators with Arguments?

Using decorators with arguments gives you flexibility. You can customize how the
decorator behaves by passing different values. For example, you can make the
decorator repeat the function 5 times, 10 times, or just once, depending on what
you need.

31. Handling JSON Data:

JSON (JavaScript Object Notation) is a common format for exchanging data
between systems. Python has a json module to handle JSON data.

Convert Python objects to JSON:

import json

person = {"name": "Alice", "age": 25}
json_data = json.dumps(person)
print(json_data) # Output: {"name": "Alice", "age": 25}

Output:

json

{"name": "Alice", "age": 25}

visit: www.thelearnnova.com

Convert JSON to Python objects:

json_string = '{"name": "Alice", "age": 25}'
person = json.loads(json_string)
print(person) # Output: {'name': 'Alice', 'age': 25}

Output:

{'name': 'Alice', 'age': 25}

32. Working with CSV Files:

CSV (Comma-Separated Values) is a simple format for storing tabular data.
Python’s csv module helps read and write CSV files.

Reading from a CSV file:

import csv

with open('data.csv', 'r') as file:
 reader = csv.reader(file)
 for row in reader:
 print(row)

Output (assuming data.csv contains the following data):

['name', 'age']
['Alice', '25']
['Bob', '30']

Writing to a CSV file:

visit: www.thelearnnova.com

import csv

data = [["name", "age"], ["Alice", 25], ["Bob", 30]]
with open('output.csv', 'w', newline='') as file:
 writer = csv.writer(file)
 writer.writerows(data)

Output: The output.csv file will contain:

name,age
Alice,25
Bob,30

33. Handling Large Data with Pandas:

Pandas is a powerful library for working with large datasets in a table-like structure
called DataFrame.

import pandas as pd

Create a DataFrame
data = {"name": ["Alice", "Bob", "Charlie"], "age": [25, 30, 35]}
df = pd.DataFrame(data)

Display the DataFrame
print(df)

Accessing specific columns
print(df["name"])

Filtering rows based on a condition
print(df[df["age"] > 30])

visit: www.thelearnnova.com

Output:

markdown
 name age
0 Alice 25
1 Bob 30
2 Charlie 35

0 Alice
1 Bob
2 Charlie
Name: name, dtype: object

 name age
2 Charlie 35

34. Working with SQLite (Database):

SQLite is a simple, file-based database. Python's sqlite3 module lets you interact
with SQLite databases.

import sqlite3

Connect to a database (or create one if it doesn't exist)
conn = sqlite3.connect('example.db')
cursor = conn.cursor()

Create a table
cursor.execute('''CREATE TABLE IF NOT EXISTS users (id INTEGER
PRIMARY KEY, name TEXT, age INTEGER)''')

Insert data into the table
cursor.execute('''INSERT INTO users (name, age) VALUES ('Alice', 25)''')
conn.commit()

visit: www.thelearnnova.com

Query data from the table
cursor.execute('''SELECT * FROM users''')
print(cursor.fetchall()) # Output: [(1, 'Alice', 25)]

Close the connection
conn.close()

Output:

[(1, 'Alice', 25)]

35. Working with APIs (Requests Library):

The requests library makes it easy to send HTTP requests (like GET, POST) and
work with the responses.

API stands for Application Programming Interface. It allows one application to
communicate with another. For example, when you use an app like Facebook or
Twitter, it communicates with their servers through APIs to fetch data (like posts,
user information, etc.).

When you want to interact with an API, you send an HTTP request (like GET,
POST) to a server, and it responds with data.

GET Request:

A GET request is used to fetch data from a server. It's like asking a server, "Please
send me this information."

Code Explanation:
import requests

visit: www.thelearnnova.com

This line imports the requests library, which makes it easy to send HTTP requests.

response = requests.get("https://api.github.com")

Here, we're sending a GET request to the GitHub API. The URL
"https://api.github.com" is the address of the GitHub API that provides information
about the current status of GitHub.

print(response.status_code)

After sending the GET request, the server responds. The status_code tells us
whether the request was successful. A 200 status code means "OK" (the request
was successful).

Output:

200

print(response.json())

The .json() method converts the response from the server into a Python dictionary.
The data returned by the server is usually in JSON format, which is a way of
structuring data that is easy to read and write for both humans and machines.

Output:

json
{
 "current_user_url": "https://api.github.com/user",
 "current_user_authorizations_html_url":
"https://github.com/settings/connections/applications{/client_id}",
 ...
}

visit: www.thelearnnova.com

This is the data returned by the GitHub API. It contains links and information
about the current user, such as the URL to access the current user's details.

POST Request:

A POST request is used to send data to a server. It's like saying, "Here's some
data, please save it or process it."

Code Explanation:
data = {"name": "Alice", "age": 25}

Here, we create a dictionary data that contains the information we want to send to
the server. In this case, it's a simple dictionary with a person's name and age.

response = requests.post("https://api.example.com", json=data)

This sends a POST request to "https://api.example.com", along with the data
dictionary in JSON format. The server will process this data (maybe save it or
perform some action).

print(response.status_code)

After the POST request is made, the server responds again. The status_code tells us
if the request was successful. A 201 status code means "Created," which typically
indicates that the data was successfully created or saved.

Output:

201

Summary:

visit: www.thelearnnova.com

● GET request: Used to fetch data from a server. The server sends back
information, and you can read it.

● POST request: Used to send data to a server. The server processes the data
and responds.

The requests library simplifies the process of interacting with APIs in Python. You
can use it to both fetch and send data to web services, which is an essential part of
working with modern web applications.

36. Working with HTML and Web Scraping (BeautifulSoup):

i) What is BeautifulSoup?

BeautifulSoup is a Python library that makes it easy to extract data from HTML
and XML documents. It's especially useful for web scraping, where you want to
retrieve data from websites.

ii) How does it work?

Web scraping involves fetching the HTML content of a webpage and then parsing
it to extract useful information. BeautifulSoup helps you navigate and search
through the HTML structure in a readable way.

iii) Example Breakdown:
from bs4 import BeautifulSoup
import requests

● from bs4 import BeautifulSoup: This imports the BeautifulSoup class from
the bs4 module, which is the library used for parsing HTML.

● import requests: This imports the requests module, which is used to send
HTTP requests to fetch the content of a webpage.

response = requests.get("https://example.com")

visit: www.thelearnnova.com

soup = BeautifulSoup(response.text, 'html.parser')

● requests.get("https://example.com"): This sends a request to the URL
"https://example.com". The requests.get() function retrieves the HTML
content of that page.

● response.text: This is the HTML content of the page returned by the
requests.get() function.

● BeautifulSoup(response.text, 'html.parser'): This creates a BeautifulSoup
object (soup) that parses the HTML content using the 'html.parser' method.
Now, soup holds a structured representation of the HTML page.

for link in soup.find_all('a'):
 print(link.get('href'))

● soup.find_all('a'): This searches the HTML content for all <a> tags, which
are used to define hyperlinks.

● link.get('href'): For each <a> tag found, this retrieves the value of the href
attribute, which contains the URL of the link.

● print(link.get('href')): This prints each URL (or link) found on the page.

Output:

If the webpage contains links like:

Page 1
Page 2

The output of the script will be:

https://www.example.com/page1
https://www.example.com/page2

5. Key Concepts for a New Learner:

visit: www.thelearnnova.com

● HTML Tags: HTML pages are structured with tags like <a>, <div>, <p>,
etc. These tags define the content and structure of the page.

● requests Module: This is used to fetch content from the web.
● BeautifulSoup: This is used to parse the fetched HTML content and extract

useful information from it.
● Navigating HTML: Using methods like find_all() allows you to search for

specific tags and attributes in the HTML.

Summary:

This example demonstrates how to use BeautifulSoup and requests to scrape a
webpage, extract all the links (<a> tags), and print their URLs. It's a simple
introduction to web scraping, where you retrieve and process web data using
Python.

37. Multiprocessing

The multiprocessing module helps you run multiple processes simultaneously,
which is useful for tasks that need a lot of CPU power. This can make your
program run faster by doing multiple things at once.

Example:

from multiprocessing import Process

Function to print numbers from 0 to 4
def print_numbers():
 for i in range(5):
 print(i)

Create a process to run the print_numbers function
process = Process(target=print_numbers)

Start the process

visit: www.thelearnnova.com

process.start()

Wait for the process to finish
process.join()

● Process(target=print_numbers) creates a new process to run the
print_numbers function.

● process.start() begins running the function in a separate process.
● process.join() makes the program wait until the process finishes before

moving on.

38. Asyncio (Asynchronous Programming)

The asyncio module allows you to write code that can perform tasks while waiting
for something else to finish (like reading a file or making a network request). This
makes your program more efficient because it can do other work instead of
waiting.

Example:

import asyncio

Asynchronous function that sleeps for 1 second and then prints a message
async def greet():
 await asyncio.sleep(1)
 print("Hello, Async!")

Run the asynchronous function
asyncio.run(greet())

● async def defines an asynchronous function.
● await asyncio.sleep(1) pauses the function for 1 second, but allows other

tasks to run during this time.

visit: www.thelearnnova.com

● asyncio.run(greet()) runs the asynchronous function.

39. Custom Exceptions

Custom exceptions allow you to create your own error types that are specific to
your program. This helps make error handling more meaningful and easier to
manage.

Example:

Define a custom exception class
class CustomError(Exception):
 pass

Raise the custom exception
try:
 raise CustomError("An error occurred!")
except CustomError as e:
 print(e)

● class CustomError(Exception) creates a new exception class.
● raise CustomError("An error occurred!") raises the custom error.
● except CustomError as e catches the error and prints the message.

40. YAML Files

YAML is a simple format for storing data, often used for configuration files. You
can use the PyYAML library to read and write YAML files in Python.

Example:

visit: www.thelearnnova.com

import yaml

Data to be written to a YAML file
data = {"name": "Alice", "age": 25}

Convert Python dictionary to YAML string
yaml_string = yaml.dump(data)

Print the YAML string
print(yaml_string)

● yaml.dump(data) converts the Python dictionary to a YAML-formatted
string.

● print(yaml_string) displays the YAML content.

42. Type Hinting

Type hinting in Python helps make your code easier to understand by showing

what types of values variables and function arguments should have. It can also help
catch errors when using tools like mypy.

Example:

Function that adds two integers and returns an integer
def add(a: int, b: int) -> int:
 return a + b

● a: int and b: int specify that both a and b are integers.
● -> int indicates that the function will return an integer.

visit: www.thelearnnova.com

43. ConfigParser

The configparser module is used to work with .ini configuration files, which store
settings for your program. You can read, write, and modify these files using this
module.

Example:

import configparser

Create a ConfigParser object
config = configparser.ConfigParser()

Read the configuration file
config.read("config.ini")

Access a setting from the DEFAULT section
print(config["DEFAULT"]["Setting"])

● config.read("config.ini") reads the configuration file.
● config["DEFAULT"]["Setting"] accesses a setting from the DEFAULT

section.

44. Command-Line Interfaces (argparse)

The argparse module helps you create command-line tools that accept arguments
from the user. This is useful for building programs that can be run from the
terminal with different options.

visit: www.thelearnnova.com

The argparse module helps you create programs that can accept input directly from
the terminal (or command line). This is useful when you want your program to be
flexible and run with different options.

Example:
import argparse

Step 1: Create an ArgumentParser object
parser = argparse.ArgumentParser(description="A simple CLI tool.")

Step 2: Add an argument for the user's name
parser.add_argument("--name", type=str, help="Enter your name.")

Step 3: Parse the arguments entered by the user
args = parser.parse_args()

Step 4: Print a greeting message with the user's name
print(f"Hello, {args.name}!")

Explanation:

● Step 1: We create an ArgumentParser object that will handle the
command-line arguments.

● Step 2: We add an argument called --name, which allows the user to provide
their name when running the program. The help part gives a description of
what this argument is for.

● Step 3: We use parse_args() to read the arguments the user provides when
running the program.

● Step 4: We print a message that greets the user by the name they provided.

How to Use:

When you run the program, you can provide your name like this:

visit: www.thelearnnova.com

python your_program.py --name John

This will output:

Hello, John!

In this example, --name is the argument, and John is the value that the program
uses to print the greeting.

45. Advanced String Formatting (f-strings)

F-strings, introduced in Python 3.6, are a way to embed expressions inside string
literals, making string formatting simpler and more readable. They allow you to
directly insert variables or expressions inside a string without needing to
concatenate or use formatting methods like .format() or %.

Key Features of F-strings:

● Cleaner and More Readable: F-strings make it easier to include variables
and expressions inside strings.

● Performance: F-strings are faster than older string formatting methods like
% formatting or .format().

● Inline Expressions: You can even include expressions (like calculations)
inside the curly braces {}.

Basic Syntax:

The syntax for an f-string is to prefix the string with the letter f or F and use curly
braces {} to insert variables or expressions directly inside the string.

Example 1: Basic Variable Insertion

name = "Alice"

visit: www.thelearnnova.com

age = 25

Use an f-string to format the message

print(f"{name} will be {age + 5} years old in 5 years.")

Output:

● Alice will be 30 years old in 5 years.

Here, name and age are variables, and inside the f-string, we can directly reference
them. We can also perform calculations inside the curly braces, such as age + 5.

Example 2: Inserting Expressions

You can include any valid Python expression inside the curly braces.

width = 5

height = 10

Calculate the area directly inside the f-string

print(f"The area of the rectangle is {width * height}.")

Output:

● The area of the rectangle is 50.

Example 3: Formatting Numbers

F-strings also allow you to format numbers, dates, or other data types directly
inside the string.

pi = 3.14159

visit: www.thelearnnova.com

Format pi to 2 decimal places

print(f"Pi rounded to two decimal places is {pi:.2f}.")

Output:

Pi rounded to two decimal places is 3.14.

In this case, :.2f is a formatting specifier that rounds the number to two decimal
places.

Advantages of F-strings:

● More Readable: It’s easy to understand because the variables and
expressions are directly in the string.

● Fewer Errors: There's no need to worry about mismatched parentheses or
formatting placeholders.

● Performance: F-strings are faster than using the .format() method or %
formatting.

F-strings are an essential feature for anyone learning Python, as they make string
manipulation more intuitive and efficient.

visit: www.thelearnnova.com

www.thelearnnova.com Follow us -

Our students have gone on to work at renowned companies,
innovative startups, and leading unicorns.

Explore our Programs

Resume
Templates

Courses

Crack
Top

MNC’s

Project

E - Books
Blogs

Job
Updates

Interview
Questions

LEARN
NOVA

https://thelearnnova.com/
https://thelearnnova.com/

	Python For Beginner
	●​What is Python?​Python is a high-level, interpreted programming language known for its simplicity and readability. It is widely used in web development, data analysis, machine learning, automation, and more.
	●​Why Learn Python?
	○​Beginner-friendly syntax
	○​Extensive libraries and frameworks
	○​Strong community support
	○​Versatile for various applications
	
	Setting Up Python on Linux and Windows: Step-by-Step Guide
	1. Install Python
	On Windows

	●​Download Python
	○​Visit python.org and download the Windows installer.
	○​Choose the appropriate version (32-bit or 64-bit) based on your system.
	●​Install Python
	○​Run the installer.
	○​Check the box "Add Python to PATH" to make Python accessible from the Command Prompt.
	○​Choose Customize Installation for optional features like pip, IDLE, and development tools.
	○​Complete the installation process.
	●​Verify Installation
	○​Open Command Prompt.
	Run:​python --version
	pip --version
	
	On Linux

	Update System Packages​sudo apt update && sudo apt upgrade -y # For Debian/Ubuntu
	
	●​Install Python
	For Debian/Ubuntu:​sudo apt install python3 python3-pip -y
	For Red Hat/CentOS:​sudo yum install python3 python3-pip -y
	
	Verify Installation​python3 --version
	pip3 --version
	
	2. Choose an Editor
	Recommended Editors for Both Linux and Windows

	●​VS Code (Visual Studio Code)
	○​Download from code.visualstudio.com.
	○​Install the Python Extension for debugging, syntax highlighting, and more.
	Command to install on Linux (Debian/Ubuntu):​sudo apt install code
	
	●​PyCharm
	○​Download from jetbrains.com/pycharm.
	○​Offers a free Community Edition.
	●​Jupyter Notebook
	Install via pip:​pip install notebook
	Launch:​jupyter notebook
	
	3. Verify Python and Pip Installation
	On Windows

	Open Command Prompt and run:​python --version
	pip --version
	
	On Linux

	Open a terminal and run:​python3 --version
	pip3 --version
	
	
	4. Set Up Virtual Environments (Optional but Recommended)
	On Windows

	Create a virtual environment:​python -m venv myenv
	
	Activate the environment:​myenv\Scripts\activate
	Deactivate with:​deactivate
	On Linux

	Create a virtual environment:​python3 -m venv myenv
	Activate the environment:​source myenv/bin/activate
	
	Deactivate with:​deactivate
	
	5. Install Essential Libraries

	Use pip to install Python libraries.
	Example Commands

	Install libraries:​pip install numpy pandas matplotlib
	
	Upgrade pip:​python -m pip install --upgrade pip # Windows
	python3 -m pip install --upgrade pip # Linux
	
	6. Additional Tips

	●​Linux Users
	○​Use a package manager like apt or yum to install Python dependencies.
	Install build tools if needed:​sudo apt install build-essential -y
	
	●​Windows Users
	○​Use PowerShell or Command Prompt for Python commands.
	○​Use Windows Subsystem for Linux (WSL) for a Linux-like development environment.
	
	Script Mode: Save a file as script.py and run it with:​python script.py
	Basic Syntax
	Hello World

	print("Hello, World!")
	
	
	Python Comments
	
	Multiline Comments
	
	
	1. Operators
	Arithmetic Operators​These operators perform mathematical operations like addition, subtraction, etc.
	●​+ : Addition
	●​- : Subtraction
	●​* : Multiplication
	●​/ : Division
	●​% : Modulus (remainder of division)
	●​// : Floor division (returns the integer part of the division)
	●​** : Exponentiation (raising to a power)
	Example:
	a = 10
	b = 5
	print(a + b) # Output: 15
	print(a - b) # Output: 5
	
	Comparison Operators​These operators compare two values and return True or False.
	●​== : Equal to
	●​!= : Not equal to
	●​> : Greater than
	●​< : Less than
	●​>= : Greater than or equal to
	●​<= : Less than or equal to
	Logical Operators​These operators are used to combine conditional statements.
	●​and : Returns True if both conditions are true
	●​or : Returns True if at least one condition is true
	●​not : Reverses the result (returns True if the condition is false)
	
	2. Variables and Data Types:
	
	3. Lists:
	
	Lists (Advanced Operations):
	
	4. Tuples:
	Creating a Tuple
	Tuple Immutability
	Tuple with One Element

	5. Dictionaries:
	
	6. Conditional Statements:
	
	7. Loops:
	
	8. Functions:
	def square(x):
	return x * x
	print(square(4)) # Output: 1
	
	9. Classes and Objects:
	10. Importing Libraries:
	11. Fibonacci Series in Python
	def fib(n):
	 a, b = 0, 1
	 while a < n:
	 print(a, end=' ')
	 a, b = b, a + b
	 print()
	fib(1000)
	
	Output:
	0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
	
	Fibonacci in Stock Market
	def fib(n):
	 a, b = 0, 1
	 sequence = []
	 while a < n:
	 sequence.append(a)
	 a, b = b, a + b
	 return sequence
	
	max_price = 1000
	retracement_levels = fib(max_price)
	print("Fibonacci retracement levels:", retracement_levels)
	
	Output:
	[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
	
	When to Buy & Sell?

	📌 Buy: When the price retraces to 61.8%, 50%, or 38.2% and bounces up.​📌 Sell: When the price rises to 38.2%, 50%, or 61.8% and struggles to go higher.​38.2%
	●​50%
	●​61.8%
	●​78.6%
	These levels are calculated by dividing each number in the Fibonacci sequence by the number two places ahead of it. For example:
	●​55 ÷ 144 ≈ 0.3819, which is approximately 38.2%.
	●​89 ÷ 233 ≈ 0.3819, which is also 38.2%.
	
	Example Trading Strategy

	1️⃣ Stock peaks at ₹1000​2️⃣ Drops to ₹618 (61.8%) → Buy​3️⃣ Rises to ₹786 (78.6%) → Sell​4️⃣ If it breaks ₹1000, wait for new Fibonacci extension levels.
	
	
	12. String Manipulation:
	13. Exception Handling:
	14. Lambda Functions:
	15. Map, Filter, and Reduce:
	16. File Handling
	 Working with Files (Advanced):
	17. Regular Expressions (Regex):
	What is Regex?
	How to Use Regex in Python?
	Finding a Word in a Sentence
	Finding a Number in a Sentence
	Checking if an Email is Valid
	Extracting a Date from a Sentence
	Replacing Spaces with Underscores
	Extracting a Website URL from Text
	Splitting a Sentence into Words
	Finding All Numbers in a Sentence
	Finding Words That Start with "A" or "a"
	Checking if a Password is Strong
	Extracting All Email Addresses from a Text
	Extracting All Hashtags from a Tweet
	Extracting All Capitalized Words (Proper Nouns)
	Removing Extra Spaces from a Sentence
	Extracting All Numbers from a String
	Extracting All Words That Start with "T" or "t"
	Checking if a String Contains Only Letters and Numbers
	Extracting Sentences That End with a Question Mark
	18. Working with Dates and Times:
	19. Modules and Packages:
	20. Object-Oriented Programming (OOP) Concepts:

	i) Class: A Blueprint for Objects
	Example: Car Class (Blueprint)

	ii) Object: A Real Example of a Class
	Example: Creating an Object

	iii) Attributes: Data Inside an Object
	Example: Accessing Attributes

	iv) Methods: Actions an Object Can Perform
	Example: A Dog That Can Bark

	v) Inheritance: Reusing Code from Another Class
	Example: A Dog Inheriting from an Animal

	vi) Encapsulation: Hiding Data Inside an Object
	Example: A Car with Private Speed
	Explanation:
	Using the Car Class:
	Output:
	Key Points:
	Why This Is Encapsulation:

	vii) Polymorphism: One Method, Different Behaviors
	Example: Different Animals Making Different Sounds

	viii) Abstraction: Hiding Complex Details
	Example: Using an Abstract Class

	Summary of OOP Concepts in Python
	Why Use OOP?
	21. Decorators:
	What Happens Step-by-Step
	Output
	Why Use Decorators?
	22. Understanding Iterators and Generators:
	23. List and Dictionary Comprehensions (Advanced):
	24. Enumerate:
	25. Zip:
	26. Set Operations:
	27. Handling Timeouts and Delays (time.sleep):
	28. Context Managers (with statement):
	29. Multi-threading:
	i. Web Scraping
	
	ii. Downloading Files
	
	iii. Parallel Data Processing
	
	iv. Server Handling Multiple Requests
	
	v. Real-time Applications
	
	vi. Background Tasks
	
	vii. Database Operations
	
	viii. Machine Learning Model Training
	
	ix. Chatbots or Virtual Assistants
	
	x. Real-time Data Monitoring
	30. Decorators with Arguments:
	What is a Decorator?
	What are Decorators with Arguments?
	Simple Example: Repeating a Function
	What Happens Here?
	Output:
	Why Use Decorators with Arguments?
	31. Handling JSON Data:
	32. Working with CSV Files:
	33. Handling Large Data with Pandas:
	34. Working with SQLite (Database):
	35. Working with APIs (Requests Library):
	GET Request:
	Code Explanation:

	POST Request:
	Code Explanation:

	Summary:
	36. Working with HTML and Web Scraping (BeautifulSoup):
	i) What is BeautifulSoup?
	ii) How does it work?
	iii) Example Breakdown:
	Output:
	5. Key Concepts for a New Learner:
	Summary:
	37. Multiprocessing
	
	38. Asyncio (Asynchronous Programming)
	
	39. Custom Exceptions
	
	
	40. YAML Files
	
	42. Type Hinting
	
	
	43. ConfigParser
	44. Command-Line Interfaces (argparse)
	Example:
	Explanation:
	How to Use:
	45. Advanced String Formatting (f-strings)
	Key Features of F-strings:
	Basic Syntax:
	Example 1: Basic Variable Insertion
	Example 2: Inserting Expressions
	Example 3: Formatting Numbers
	Advantages of F-strings:

